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Abstract 
 
Technologies now exist to simulate and observe fire spread at spatial resolutions on the order of 30 meters.  The 
FARSITE modeling system recently introduced to the US fire management community provides two-
dimensional fire spread simulations from a laptop computer, given topography, fuels, and weather information.  
The quality of the fire spread simulations is subject to examination.  This paper describes a new methodology 
for the error analysis of two-dimensional fire spread simulations, from concurrent observations of actual fire 
spread.  The methodology provides for construction of error bounds on model-based fire perimeter projections, 
which delimit the area within which the actual fire perimeter will be found at the predicted time, with specified 
probability.  A case study demonstrates the capabilities and performance characteristics of FARSITE in the 
early stages of a wildfire that occurred in southern California, in summer 1996. 
 
Introduction 
 
Wildland fire models predict fire behavior, given the fuels, weather and topography.  Some fire models have a 
long history, including the Rothermel spread model (Rothermel, 1972) in the USA, the Canadian model 
(Forestry Canada Fire Danger Group, 1992), and the McArthur model of Australia (McArthur, 1967; Noble et 
al., 1980).    All of these models can err significantly in predicting the spread rate of fire.  A system is needed to 
quantify the errors in fire spread models, particularly for two-dimensional fire spread models. 
 
Finney (1998) recently introduced a personal computer-based fire modeling system in the USA that simulates 
fire spread in two dimensions, including surface fires and crown fires.  The surface fire component incorporates 
the Rothermel model, with modifications by Albini (1976).  Called FARSITE, the system utilizes the Rothermel 
model to determine the local maximum fire spread rate from a point as a function of the local fire environment 
variables.  It then describes the local pattern of spread  from the point by an ellipse.  The process is repeated for 
as many points around the fire perimeter as specified by simulation parameters, and the envelope that contains 
all of the local ellipses constitutes the new fire perimeter.  This method of propagating the fire front, known as 
Huygens’ principle, was described by Richards (1995). 
 
This paper describes research intended to develop a suite of modeling tools to plan and support fire operations.  
Weather models simulate the spatial and temporal variations of wind, temperature, and relative humidity that 
influence fuel moisture and fire spread.  A fire spread model accounts for the combined effects of weather, fuel 
and terrain conditions.  A statistical model analyzes the difference between simulated and observed fire spread 
to determine the magnitude and spatial/temporal variability of the fire spread simulation errors.  The error 
analysis can be conducted on any appropriate combination of weather and fire spread models. 
 
The following section explains the spread model error measure and a two-dimensional error function.  A simple 
example of an error analysis is provided.  I then introduce a random error component, and discuss its treatment.  
Finally, I analyze a fire simulation generated by FARSITE, for an actual fire that occurred in southern 
California, in summer 1996. 
 
Definition of fire spread model error 
 
Suppose we are given a fire perimeter P0 at an initial time t0, from which we model fire spread that results in the 
perimeter Pm at time t1.  Suppose further that the actual fire grows to the perimeter Pa in the same period of time.  
We can map and quantify the differences between the simulated and actual fires in two-dimensional space, by 
examining their respective areas in the sectors of Pm (Figure 1). 
 



Figure 1.  Schematic diagram of simulated and actual fire perimeters, Pm and Pa respectively, which start from 
an initial perimeter P0.  The cross-hatched area measures fire growth within the sector (s1, s2 ) for the actual fire, 
while the simulated fire also extends over the area marked by diagonals. 
 
Let the sector boundaries si denote the orthogonal trajectories generated by the spread model.  Within the sector 
(s1,s2), let Aa denote the area bounded by the initial and actual perimeters (cross-hatched area in Figure 1), and 
Am the area similarly bounded by the initial and simulated fire perimeters (hatched areas, including Aa).  Let 
E(s1,s2,t0,t1) represent the ratio of the areas: 
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We use E in (1) to be a measure of the error in Pm.  It expresses the difference between the simulated and actual 
fires, at a spatial resolution of our choice, specified by the arguments of E.  It also scales to the ratio of the mean 
burn paths of the actual and simulated fires within the sector.  Generally, the factor governing spatial resolution 
will be the resolution of the actual fire perimeter data.  E indicates a goodness of coverage of the simulated 
spread, in comparison to the actual spread within the sector, if the sector is chosen so that the actual perimeter is 
approximately orthogonal to the sector boundaries.  Within the limits of the data, the sector can be chosen small 
enough to satisfy orthogonality to an arbitrary degree of accuracy.  The mathematical details are given by 
Fujioka (2001). 
 
We can use the error measure E around the perimeter of the fire to assess the two-dimensional variability of the 
fire spread model error.  We calculate E within consecutive sectors around the entire perimeter, from which we 
build an error function, B(sj ), where the subscript j indexes each sector.  Let sj be the midpoint of the sector. 
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B is a discrete function, but assume we can interpolate it to obtain a continuous measure of spread model error 
around the fire perimeter.  B summarizes information about the spatial accuracy of the fire spread model.  
Ideally, B(s,t1) =1, in which case the spread model burns the same area that the actual fire does within each 
sector, and at least approximates the shape of the actual fire. 
 
Moreover, if the model error is consistent over time, B can be used to correct the model predictions at 
succeeding time steps. Let Rc(s,t2 ) denote the spread rate thus corrected: 
  (3) 2 2( , ) ( , ) ( , )cR s t R s t B s t=
Generally, B varies in space and time. 
 



Figure 2.  A hypothetical example in which a fire is predicted to burn elliptically with an eccentricity of 0.2 
(heavy line), but actually burns as an ellipse with an eccentricity of 0.6 (thin line).  The cross marks the origin of 
the fire. 
 
Example of error analysis of an elliptic fire 
 
Suppose that a fire grows elliptically west to east with eccentricity ε (Figure 2).  Assume that the origin of the 
fire is the left focus of the ellipse, and set the origin of a two-dimensional polar coordinate system there.  Let the 
length of the major axis be 2α>0; then the length of the radius vector is a function of θ: 
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Note that α determines the size of the ellipse and ε dictates its shape.  An eccentricity of zero produces a circular 
fire perimeter, a less likely case than a non-zero ε.  In the latter case, the fire has a preferred spread direction, 
where θ equals zero.  An alternative parameterization of elliptical shape is the length to breadth ratio, ρ, which 
is the ratio of the length of the major axis to the minor axis.  Let 2β be the length of the minor axis.  Then 
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by definition, so 
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Let k denote either the simulated or actual fire.  Then the area of the sector in  is given by ( 1 2,θ θ )
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The computation of E (equation 1) in sectors around the perimeter of the example yields the error function B 
(equation 2) shown in Figure 3.  A perfect simulation would result in B equal to one everywhere.  In our 
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Figure 3.  Error function B for the fire example in Figure 2. 
 
example, B attains a maximum value of approximately 1.75 in the direction of the heading fire, and a minimum 
value of 0.25 in the direction of the backing fire.  B is symmetric about 180°, because the simulated and actual 
perimeters are also symmetric about the x-axis.  Note that B only approximates the continuous spatial variations 
of the error in the spread prediction, because the elements of B are located at discrete points around the fire 
perimeter, each representing a sector calculation. 
 
Assuming that the spread model error characteristics will persist into the next time period, we can use B to 
correct for the error observed in the current period.  The correction factor must retard the predicted spread when 
the model overestimated, and advance it when spread was underestimated.  E is such a correction factor.  
However, the integrand function in the area calculation (7) is the square of r, because r is a scaling factor in the 
polar coordinate system.  We want a correction factor of the form ra/rm (ratio of the mean radii of the actual and 
modeled fires, respectively)  which we obtain from the square root of E, hence of B.  Our corrected prediction at 
time t2 is therefore 
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where the subscript t1 denotes the current time step. 
 
The first term on the right describes the actual fire perimeter at time t1 in our example; the second term is the 
incremental growth, corrected for the error observed in the current step.  Thus, equation (8) incorporates 
information external to the spread model, namely the current position of the actual fire, r , and the 

proportional spread of the actual fire, relative to the spread model, 

( )a θ

( )B θ .  The positions of the simulated and 
actual fires at time t2 are depicted in Figure 4, including corrected and uncorrected simulations. 
 
The position corrected perimeter is the result of incorporating the actual perimeter location after the first time 
step, but not the correction factor.   The fully corrected perimeter considerably improves upon both the 
uncorrected and the position corrected simulation at the second step, emphasizing the importance of the error 
function information, in this case.  In fact, if we were to evaluate B for the uncorrected simulated and actual 
perimeters of the second time period in Figure 4, it would be the same result as for the first time period. 
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Figure 4.  Fire perimeter plots at time t2 of the example.  The fully corrected perimeter occupies nearly the same 
position as the actual perimeter. 
 
The eccentricity of the corrected perimeter has been considerably modified, due to the incorporation of the 
actual perimeter location at the end of the first time period, and to the influence of the correction factor ( )B θ  
in equation (8).  The position corrected perimeter effectively ignores the correction factor by setting B to 1 for 
all θ .  The example also demonstrates the importance of describing the variability of error around the perimeter, 
and not only in one direction. 
 
Analysis of random spread model errors 
 
We now consider the preceding example when E is a random variable.  Suppose, for example, that E follows a 
lognormal distribution: 

 2ln ( , )a

m

A N
A

µ σ∼  (9) 

Figure 5 shows an example of fire perimeter data with random points that fit the probability model in (9).  
Suppose we sampled the spread distances (radii) directly, and obtained the lognormal parameters given above.  
The spatial confidence interval for the true perimeter is derived from a lognormal distribution with variance s2.  
Under the null hypothesis that the simulated fire covers the same area as the actual fire would on average, the 
spread model can be used to construct a spatial confidence interval for the simulated perimeter. 
 
At any given time t, let R(θ) denote the true perimeter point along the radial in direction θ.  Then an 
approximate 1-α confidence interval for ln R(θ) derives from 
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from which we obtain 
 



Error Bounds on Spread Model Example
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Figure 5.  A hypothetical example of fire perimeter data points that contain a lognormal random error 
component as described by the probability model in (9).  The solid line is the simulated fire perimeter 
corresponding to the null hypothesis that the fire model replicates the mean actual fire.  The dashed lines 
represent 95% confidence limits on the simulated perimeter. 
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where Z(⋅) is the quantile of the standard normal distribution that corresponds to the cumulative probability of its 
argument.  Under the null hypothesis that the fire model replicates the actual fire, the semi-major axes of the 
ellipses that correspond to the upper and lower bounds of the approximate 1-α confidence interval for the true 
perimeter are: 
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Figure 5 shows the simulated perimeter and its 95% confidence limits for our example. 

 
Analysis of the 1996 Bee Fire 
 
I applied the error analysis methodology described above to a fire which we modeled with FARSITE.  The Bee 
Fire occurred in the San Bernardino National Forest, California, USA, over the period 29 June – 3 July 1996.  
The USDA Forest Service collected data on the environment and growth of the fire for subsequent analysis 
(Weise and Fujioka, 1998).  I focused the analysis on the first two hours of the fire, when the time interval 
between perimeter observations was shortest. 
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Figure 6.  Observed and simulated Bee Fire perimeters on 29 June 1996, 1657 PDT.  The perimeter plot marked 
“MSM Winds” resulted from wind input from a mesoscale weather model, with initial data from 28 June 1996, 
1700 PDT.  The “Original” perimeter was generated from a nearby wind observation. 
 
The Bee Fire started in the afternoon of 29 June, at the base of the San Jacinto Mountains.  The fire began at 
approximately 680 m above sea level, heading generally northeast.  The suppression team contained the fire 
three days later, but not before the fire covered 3,848 ha.  Chaparral was abundant, the predominant fuel type 
being chamise (Adenostema fasciculatum H&A).  Over its life, the Bee Fire threatened multiple resources, 
including the popular mountain community of Idyllwild, to the east. 
 
The temperature at the time of ignition, 1647 Pacific Daylight Time (PDT), was approximately 29° C, relative 
humidity 19%.  Winds blew out of the southwest to northwest at approximately 2 m/s.  Less than two hours 
later, the temperature dropped to 24° C, and relative humidity increased to 24%.  Weather simulations with a 
mesoscale spectral model (Chen et al., 1998) indicated that the sea breeze from the west was approaching the 
area at about the time of ignition.  Figure 7 shows the fire perimeter observed on 29 June 1996 at 1657 PDT, 
approximately 12 minutes after ignition.  Two perimeters simulated by FARSITE are shown for comparison, 
one based on a wind observation near the fire, and the other based on the winds from the mesoscale spectral 
model (MSM). 
 
The error analysis for the first perimeter was used to estimate a probability distribution for the spread model 
errors, which did not resemble a normal distribution.  I therefore estimated the error distribution by 
nonparametric methods, from which I constructed error bounds using the nonparametric density in place of the 
lognormal density in equation (11) (Figure 7).  See Fujioka (2001) for the details of the distributional analysis. 
 
The predicted fire perimeter did not represent the actual fire perimeter well at 1730 PDT.  Moreover, the actual 
fire spread beyond the 95% confidence bound in the northwest direction.  The fire appeared to change direction 
from its initial heading at 1657 PDT. 
 
Summary and conclusions 
 
This paper described a new method to analyze two-dimensional fire spread modeling errors.  The method can be 
used to conduct appropriate statistical tests of hypotheses relevant to the fire spread model, regardless of the 
choice of fire model.  An error correction scheme is proposed, which can be used to adjust model predictions on
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Figure 7.  Position and error corrected perimeter prediction for the Bee Fire, 29 June 1996, 1730 PDT, and 
approximate 95% confidence interval for the true perimeter. 
 
the fly, when the spread model error characteristics are consistent over time.  The method also provides for 
construction of error bounds on predicted perimeters.  Application of the error analysis to a southern California 
case study revealed how complex fire prediction can be.  A significant error occurred in the FARSITE 
simulation of the 1996 Bee Fire, which might have been due to changing wind conditions, or a combination of 
wind and slope effects that the fire model did not capture.  The error analysis also misled the placement of error 
bounds, because the spread model error was not consistent over time.  Further work is necessary on a 
spatial/temporal error analysis methodology.  This should include spatial and temporal dependencies of model 
errors. 
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